240 research outputs found

    TiSGeD: a database for tissue-specific genes

    Get PDF
    Summary: The tissue-specific genes are a group of genes whose function and expression are preferred in one or several tissues/cell types. Identification of these genes helps better understanding of tissue–gene relationship, etiology and discovery of novel tissue-specific drug targets. In this study, a statistical method is introduced to detect tissue-specific genes from more than 123 125 gene expression profiles over 107 human tissues, 67 mouse tissues and 30 rat tissues. As a result, a novel subject-specialized repository, namely the tissue-specific genes database (TiSGeD), is developed to represent the analyzed results. Auxiliary information of tissue-specific genes was also collected from biomedical literatures

    Spatial and topological organization of DNA chains induced by gene co-localization

    Get PDF
    Transcriptional activity has been shown to relate to the organization of chromosomes in the eukaryotic nucleus and in the bacterial nucleoid. In particular, highly transcribed genes, RNA polymerases and transcription factors gather into discrete spatial foci called transcription factories. However, the mechanisms underlying the formation of these foci and the resulting topological order of the chromosome remain to be elucidated. Here we consider a thermodynamic framework based on a worm-like chain model of chromosomes where sparse designated sites along the DNA are able to interact whenever they are spatially close-by. This is motivated by recurrent evidence that there exists physical interactions between genes that operate together. Three important results come out of this simple framework. First, the resulting formation of transcription foci can be viewed as a micro-phase separation of the interacting sites from the rest of the DNA. In this respect, a thermodynamic analysis suggests transcription factors to be appropriate candidates for mediating the physical interactions between genes. Next, numerical simulations of the polymer reveal a rich variety of phases that are associated with different topological orderings, each providing a way to increase the local concentrations of the interacting sites. Finally, the numerical results show that both one-dimensional clustering and periodic location of the binding sites along the DNA, which have been observed in several organisms, make the spatial co-localization of multiple families of genes particularly efficient.Comment: Figures and Supplementary Material freely available on http://dx.doi.org/10.1371/journal.pcbi.100067

    Sex-specific associations between particulate matter exposure and gene expression in independent discovery and validation cohorts of middle-aged men and women

    Get PDF
    BACKGROUND: Particulate matter (PM) exposure leads to premature death, mainly due to respiratory and cardiovascular diseases. OBJECTIVES: Identification of transcriptomic biomarkers of air pollution exposure and effect in a healthy adult population. METHODS: Microarray analyses were performed in 98 healthy volunteers (48 men, 50 women). The expression of eight sex-specific candidate biomarker genes (significantly associated with PM(10) in the discovery cohort and with a reported link to air pollution-related disease) was measured with qPCR in an independent validation cohort (75 men, 94 women). Pathway analysis was performed using Gene Set Enrichment Analysis. Average daily PM(2.5) and PM(10) exposures over 2-years were estimated for each participant’s residential address using spatiotemporal interpolation in combination with a dispersion model. RESULTS: Average long-term PM(10) was 25.9 (± 5.4) and 23.7 (± 2.3) μg/m(3) in the discovery and validation cohorts, respectively. In discovery analysis, associations between PM(10) and the expression of individual genes differed by sex. In the validation cohort, long-term PM(10) was associated with the expression of DNAJB5 and EAPP in men and ARHGAP4 (p = 0.053) in women. AKAP6 and LIMK1 were significantly associated with PM(10) in women, although associations differed in direction between the discovery and validation cohorts. Expression of the eight candidate genes in the discovery cohort differentiated between validation cohort participants with high versus low PM(10) exposure (area under the receiver operating curve = 0.92; 95% CI: 0.85, 1.00; p = 0.0002 in men, 0.86; 95% CI: 0.76, 0.96; p = 0.004 in women). CONCLUSIONS: Expression of the sex-specific candidate genes identified in the discovery population predicted PM(10) exposure in an independent cohort of adults from the same area. Confirmation in other populations may further support this as a new approach for exposure assessment, and may contribute to the discovery of molecular mechanisms for PM-induced health effects. CITATION: Vrijens K, Winckelmans E, Tsamou M, Baeyens W, De Boever P, Jennen D, de Kok TM, Den Hond E, Lefebvre W, Plusquin M, Reynders H, Schoeters G, Van Larebeke N, Vanpoucke C, Kleinjans J, Nawrot TS. 2017. Sex-specific associations between particulate matter exposure and gene expression in independent discovery and validation cohorts of middle-aged men and women. Environ Health Perspect 125:660–669; http://dx.doi.org/10.1289/EHP37

    Modulation of chromatin position and gene expression by HDAC4 interaction with nucleoporins

    Get PDF
    The histone deacetylase HDAC4 associates with the nuclear pore complex component Nup155 to modulate gene expression during cardiomyocyte hypertrophy

    GEPAS, a web-based tool for microarray data analysis and interpretation

    Get PDF
    Gene Expression Profile Analysis Suite (GEPAS) is one of the most complete and extensively used web-based packages for microarray data analysis. During its more than 5 years of activity it has continuously been updated to keep pace with the state-of-the-art in the changing microarray data analysis arena. GEPAS offers diverse analysis options that include well established as well as novel algorithms for normalization, gene selection, class prediction, clustering and functional profiling of the experiment. New options for time-course (or dose-response) experiments, microarray-based class prediction, new clustering methods and new tests for differential expression have been included. The new pipeliner module allows automating the execution of sequential analysis steps by means of a simple but powerful graphic interface. An extensive re-engineering of GEPAS has been carried out which includes the use of web services and Web 2.0 technology features, a new user interface with persistent sessions and a new extended database of gene identifiers. GEPAS is nowadays the most quoted web tool in its field and it is extensively used by researchers of many countries and its records indicate an average usage rate of 500 experiments per day. GEPAS, is available at http://www.gepas.org

    Sole-Search: an integrated analysis program for peak detection and functional annotation using ChIP-seq data

    Get PDF
    Next-generation sequencing is revolutionizing the identification of transcription factor binding sites throughout the human genome. However, the bioinformatics analysis of large datasets collected using chromatin immunoprecipitation and high-throughput sequencing is often a roadblock that impedes researchers in their attempts to gain biological insights from their experiments. We have developed integrated peak-calling and analysis software (Sole-Search) which is available through a user-friendly interface and (i) converts raw data into a format for visualization on a genome browser, (ii) outputs ranked peak locations using a statistically based method that overcomes the significant problem of false positives, (iii) identifies the gene nearest to each peak, (iv) classifies the location of each peak relative to gene structure, (v) provides information such as the number of binding sites per chromosome and per gene and (vi) allows the user to determine overlap between two different experiments. In addition, the program performs an analysis of amplified and deleted regions of the input genome. This software is web-based and automated, allowing easy and immediate access to all investigators. We demonstrate the utility of our software by collecting, analyzing and comparing ChIP-seq data for six different human transcription factors/cell line combinations

    The Characterisation of Three Types of Genes that Overlie Copy Number Variable Regions

    Get PDF
    Background: Due to the increased accuracy of Copy Number Variable region (CNV) break point mapping, it is now possible to say with a reasonable degree of confidence whether a gene (i) falls entirely within a CNV; (ii) overlaps the CNV or (iii) actually contains the CNV. We classify these as type I, II and III CNV genes respectively. Principal Findings: Here we show that although type I genes vary in copy number along with the CNV, most of these type I genes have the same expression levels as wild type copy numbers of the gene. These genes must, therefore, be under homeostatic dosage compensation control. Looking into possible mechanisms for the regulation of gene expression we found that type I genes have a significant paucity of genes regulated by miRNAs and are not significantly enriched for monoallelically expressed genes. Type III genes, on the other hand, have a significant excess of genes regulated by miRNAs and are enriched for genes that are monoallelically expressed. Significance: Many diseases and genomic disorders are associated with CNVs so a better understanding of the different ways genes are associated with normal CNVs will help focus on candidate genes in genome wide association studies

    EzArray: A web-based highly automated Affymetrix expression array data management and analysis system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Though microarray experiments are very popular in life science research, managing and analyzing microarray data are still challenging tasks for many biologists. Most microarray programs require users to have sophisticated knowledge of mathematics, statistics and computer skills for usage. With accumulating microarray data deposited in public databases, easy-to-use programs to re-analyze previously published microarray data are in high demand.</p> <p>Results</p> <p>EzArray is a web-based Affymetrix expression array data management and analysis system for researchers who need to organize microarray data efficiently and get data analyzed instantly. EzArray organizes microarray data into projects that can be analyzed online with predefined or custom procedures. EzArray performs data preprocessing and detection of differentially expressed genes with statistical methods. All analysis procedures are optimized and highly automated so that even novice users with limited pre-knowledge of microarray data analysis can complete initial analysis quickly. Since all input files, analysis parameters, and executed scripts can be downloaded, EzArray provides maximum reproducibility for each analysis. In addition, EzArray integrates with Gene Expression Omnibus (GEO) and allows instantaneous re-analysis of published array data.</p> <p>Conclusion</p> <p>EzArray is a novel Affymetrix expression array data analysis and sharing system. EzArray provides easy-to-use tools for re-analyzing published microarray data and will help both novice and experienced users perform initial analysis of their microarray data from the location of data storage. We believe EzArray will be a useful system for facilities with microarray services and laboratories with multiple members involved in microarray data analysis. EzArray is freely available from <url>http://www.ezarray.com/</url>.</p

    Genome Expression Pathway Analysis Tool – Analysis and visualization of microarray gene expression data under genomic, proteomic and metabolic context

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Regulation of gene expression is relevant to many areas of biology and medicine, in the study of treatments, diseases, and developmental stages. Microarrays can be used to measure the expression level of thousands of mRNAs at the same time, allowing insight into or comparison of different cellular conditions. The data derived out of microarray experiments is highly dimensional and often noisy, and interpretation of the results can get intricate. Although programs for the statistical analysis of microarray data exist, most of them lack an integration of analysis results and biological interpretation.</p> <p>Results</p> <p>We have developed GEPAT, Genome Expression Pathway Analysis Tool, offering an analysis of gene expression data under genomic, proteomic and metabolic context. We provide an integration of statistical methods for data import and data analysis together with a biological interpretation for subsets of probes or single probes on the chip. GEPAT imports various types of oligonucleotide and cDNA array data formats. Different normalization methods can be applied to the data, afterwards data annotation is performed. After import, GEPAT offers various statistical data analysis methods, as hierarchical, k-means and PCA clustering, a linear model based t-test or chromosomal profile comparison. The results of the analysis can be interpreted by enrichment of biological terms, pathway analysis or interaction networks. Different biological databases are included, to give various information for each probe on the chip. GEPAT offers no linear work flow, but allows the usage of any subset of probes and samples as a start for a new data analysis. GEPAT relies on established data analysis packages, offers a modular approach for an easy extension, and can be run on a computer grid to allow a large number of users. It is freely available under the LGPL open source license for academic and commercial users at <url>http://gepat.sourceforge.net</url>.</p> <p>Conclusion</p> <p>GEPAT is a modular, scalable and professional-grade software integrating analysis and interpretation of microarray gene expression data. An installation available for academic users can be found at <url>http://gepat.bioapps.biozentrum.uni-wuerzburg.de</url>.</p
    corecore